Abstract

The Panasqueira W-Sn deposit is the largest quartz-vein type deposit of the Iberian Peninsula and the most important wolframite deposit in Western Europe. The ore-veins are almost exclusively sub-horizontal. Besides ore-bearing sub-horizontal veins, the Panasqueira mine also contains barren quartz veins. There are essentially two generations of barren quartz: quartz, contemporaneous with the earliest regional metamorphism (QI), and recrystallized quartz, contemporaneous with the thermal metamorphism related to the granite intrusion (QII). Fluid inclusion studies (microthermometry and Raman) were undertaken in order to distinguish fluids contemporaneous with the barren quartz from those contemporaneous with the ore-bearing quartz (QIII). Fluid inclusion data indicate that the barren and ore-bearing quartz fluids are dominantly aqueous (93 to 98 mol% H2O), with a nearly constant bulk salinity (8 to 12 wt% eq. NaCl), with the quantity of volatile component (determined by Raman spectrometry) higher in QIII, but never greater than 5 mol%. However, the CO2/CH4 + N2 ratio is different for each type of quartz. Volatiles are dominated by CH4 (10 to 96 mol% ZCH4 and/or N2 (3 to 87 mol% ZN2) in the barren quartz and by CO2 (60 to 73 mol% ZCO2) in ore-bearing quartz. The bulk chemical composition of the fluids in QIII is comparable to that found commonly in hydrothermal fluids associated with wolframite mineralization, where Na>K>Ca and HCO3>Cl>SO4. A dispersion in TH (226 to 350 °C) found in QIII, together with a variation in the degree of filling (0.5 to 0.7) and with the consequent variation of fluid densities (0.70 to 0.79), may result from changes in the fluid pressure regime below lithostatic pressure, suggesting vein filling related to tectonic events.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call