Abstract

The Large Area Sensor (LAS) is a 1350 times1350 array of active pixels on a 40 Im pitch fabricated in a 0.35 im CMOS process. Stitching technology is employed to achieve an area of 5.4 cm times5.4 cm. The sensor includes 'regions of reset', whereby three different integration times can be set on the array to achieve a large imaging range for static scenes. Characterization of the noise performance included temporal and fixed pattern sources. LAS was found to have a read noise of 62 e <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-</sup> , a full well capacity of 61 times10 <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> e <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-</sup> and a conversion gain of 5 e <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">-</sup> per digital number (DN). The fixed pattern noise (FPN) was evaluated at half saturation; within a single stitched section of the array, column-to-column FPN was found to be 0.6%, while the pixel-to-pixel FPN was 3%. Both FPN sources were found to be gain related and could be corrected via flat fielding. Based on the results of characterization, LAS was coupled to a structured CsI:Tl scintillator and included in an X-ray diffraction system developed for the analysis of breast biopsy samples. Data acquired with plastic test objects agrees with that acquired by a previous prototype sensor. It is demonstrated that an imaging output range of 140 dB can be achieved using integration times of 0.1 ms to record the transmitted X-ray beam and 2.3 s to record the lower intensity scattered radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.