Abstract

Malignant hyperthermia (MH) and central core disease are related skeletal muscle diseases often linked to mutations in the type 1 ryanodine receptor (RYR1) gene, encoding for the Ca(2+) release channel of the sarcoplasmic reticulum (SR). In humans, the Y522S RYR1 mutation is associated with malignant hyperthermia susceptibility (MHS) and the presence in skeletal muscle fibers of core regions that lack mitochondria. In heterozygous Y522S knock-in mice (RYR1(Y522S/WT)), the mutation causes SR Ca(2+) leak and MHS. Here, we identified mitochondrial-deficient core regions in skeletal muscle fibers from RYR1(Y522S/WT) knock-in mice and characterized the structural and temporal aspects involved in their formation. Mitochondrial swelling/disruption, the initial detectable structural change observed in young-adult RYR1(Y522S/WT) mice (2 months), does not occur randomly but rather is confined to discrete areas termed presumptive cores. This localized mitochondrial damage is followed by local disruption/loss of nearby SR and transverse tubules, resulting in early cores (2-4 months) and small contracture cores characterized by extreme sarcomere shortening and lack of mitochondria. At later stages (1 year), contracture cores are extended, frequent, and accompanied by areas in which contractile elements are also severely compromised (unstructured cores). Based on these observations, we propose a possible series of events leading to core formation in skeletal muscle fibers of RYR1(Y522S/WT) mice: Initial mitochondrial/SR disruption in confined areas causes significant loss of local Ca(2+) sequestration that eventually results in the formation of contractures and progressive degradation of the contractile elements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.