Abstract
Flock house virus (FHV) is the best studied member of the Nodaviridae, a family of small, nonenveloped, isometric RNA viruses of insects and fish. Nodavirus genomes comprise two single-stranded positive-sense RNA segments (RNAs 1 and 2) that encode the viral RNA-dependent RNA polymerase (RdRp) and capsid protein precursor, respectively. The RdRp replicates both genomic RNAs and also generates a subgenomic RNA (RNA3) that is not encapsidated. Although genomic RNAs replicate through negative-sense intermediates, little is known about these RNAs or the details of the replication mechanism. Negative-sense RNAs 1, 2, and 3, as well as putative dimers of RNAs 2 and 3, have been detected in previous studies. In this study we detected dimers of RNAs 1, 2, and 3 by Northern blot analyses of RNA samples from FHV-infected Drosophila cells, as well as from mammalian and yeast cells supporting FHV RNA replication. Characterization of these RNA species by RT-PCR and sequence determination showed that they contained head-to-tail junctions of FHV RNAs. RNAs containing the complete sequence of RNA2 joined to RNA3 were also detected during replication. To examine the template properties of these dimeric RNAs, we made corresponding cDNAs and transcribed them from a T7 promoter in mammalian cells constitutively expressing T7 RNA polymerase, together with RNA1 to provide the RdRp. Although heterologous terminal extensions inhibit FHV RNA replication, monomeric RNA2 was resolved and replicated from complete or partial homodimer templates and from an RNA2-RNA3 heterodimer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.