Abstract

The aim of the current article is to characterize and to prove the stability of multi-Euler-Lagrange quadratic mappings. In other words, it reduces a system of equations defining the multi-Euler-Lagrange quadratic mappings to an equation, say, the multi-Euler-Lagrange quadratic functional equation. Moreover, some results corresponding to known stability (Hyers, Rassias, and Gӑvruta) outcomes regarding the multi-Euler-Lagrange quadratic functional equation are presented in quasi-β-normed and Banach spaces by using the fixed point methods. Lastly, an example for the nonstable multi-Euler-Lagrange quadratic functional equation is indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.