Abstract

<p>Since 2015, the annual average ozone (O<sub>3</sub>) concentration in Chengdu has shown significant positive trends and reached a maximum of 55.2 ppb in 2018. By 2019, the annual average O<sub>3</sub> value has slightly decreased to 52.9 ppb, but it is still at the highest level in the Sichuan Basin. In order to illuminate VOCs characteristics, identify critical ozone precursors and explore potential sources during ozone pollution events in Chengdu plain, we performed a comprehensive field observation campaign from 9 August to 14 September 2019. During the campaign, the averaged O<sub>3</sub> concentration was 29.1 ppb, and mean values of ozone precursors NOx and TVOC were 14.9 ppb and 31.3 ppb, respectively. Two severe ozone pollution events occurred in Chengdu during the observation period. In ozone pollution event 1, the ratios of the average O<sub>3</sub>, NOx, NMHCs, and OVOCs concentration on the polluted days relative to the clean days were 4.1, 0.3, 0.6, and 1.4, respectively. In ozone pollution event 2, the ratios of the average O<sub>3</sub>, NOx, NMHCs, and OVOCs concentration on the polluted days relative to the clean days were 3.4, 0.4, 0.6 and 2.1, respectively. The difference of the ratios indicates that there are secondary conversions of NMHCs and NOx and secondary formation of O<sub>3</sub> and OVOCs during the pollution period. Isoprene, Acetaldehyde, Methyl Vinyl Ketone, m/p-Xylene and 1-Butene constitute a large fraction of the L<sub>OH</sub> during polluted days.  In this study, air mass cluster analysis, the potential source contribution function (PSCF), and positive matrix factorization (PMF) receptor models were used in combination to analyze the sources and potential source areas of VOCs during O3 pollution events.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call