Abstract
Submicron aerosol is of extensive concern not only due to its significant impact on air quality but also because it is detrimental to human health. In this study, we investigated the characteristics, sources and chemical processes of submicron aerosol based on real-time online measurements of submicron aerosols (NR-PM1) during December 2015 at an urban site in Beijing. The average mass concentration of NR-PM1 was 92.5±84.9 µg/m3, the hourly maximum was 459.1 µg/m3 during the entire observation. The organic aerosol (OA) (55%) was the largest contributor to NR-PM1. The average mass concentration of PAHs was 0.217±0.247 µg/m3, exhibiting the highest concentration at night and the lowest levels in the daytime. The average mass concentration of organic nitrate was 2.52±2.36 µg/m3 and that of inorganic nitrate was 7.62±8.22 µg/m3, accounting for 36% and 64%, respectively, of the total nitrate mass. Positive matrix factorization (PMF) differentiated the OA into five chemical components including LV-OOA, SV-OOA, COA, HOA and CCOA, accounting for 22%, 16%, 13%, 25% and 24% respectively, of the total OA. The average NR-PM1 mass concentration on the heavy polluted days (HPD) was 182.8±70.2 µg/m3, which was approximately 9 times that on clean days (CD). The enhanced secondary formation of SNA was evident on HPD, especially the rapid increase of sulfate (23%) and nitrate (19%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.