Abstract

An extensive chemical investigation of fog water’s chemical composition, as well as source characterization, were carried out during the winter season (December to February) at an outflow location (Bhola, Bangladesh) of the Indo-Gangetic Plain (IGP). Characterization of the source involved correlational analysis, enrichment factor analysis, estimation of percentage sources, and air mass trajectory analysis. The average pH of fog water in Bhola was found to be 7.03 ± 0.02, demonstrating that acid-neutralizing components were successful in neutralizing acidifying species. The concentrations of the water-soluble ions were determined, and they were in the following order: Ca2+ > NO3− > Cl− > Na+ > SO42− > NH4+ > Mg2+ > K+ > F− > HCO3−. Of the six trace elements (Fe, Zn, Mn, Cu, Ni, Cr, Pb) that were analyzed, Zn ions were found in the highest concentration, followed by Mn ions. Neutralization factor analysis showed that the key neutralization components of fog-water were Ca2+ and NH4+. Enrichment factor (EF) calculation revealed the anthropogenic origin of NO3−, SO42−, Zn, Mn, and Cu. The percentage source contributions of NO3− (99.74%), SO42− (84.02%), and Cl− (8.30%) further support the anthropogenic origin. Backward air mass trajectory analysis was performed using the NOAA-HYSPLIT model. Long-range transport of contaminants over the IGP area was found to have a profound impact on the chemical composition of fog on the Bhola coast. This research has provided novel findings for the chemical characterization of fog water and the detection of its source at IGP outflow, and highlighted the anthropogenic contributions to local air pollution, as well as the transboundary influence on local air quality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call