Abstract

Semiconductor quantum dots (QDs) are very important luminescent nanomaterials with a wide range of potential applications. Currently, QDs as labeling probes are broadly used in bioassays, including immunoassay, DNA hybridization, and bioimaging, due to their excellent physical and chemical properties, such as broad excitation spectra, narrow and size-dependent emission profiles, long fluorescence life time, and good photostability. The characterization of QDs and their conjugates is crucial for their wide bioapplications. CE has become a powerful tool for the separation and characterization of QDs and their conjugates. In this review, some CE separation models of QDs are first introduced, mainly including CZE, CGE, MEKC, and ITP. And then, some key applications, such as the measurements of size, surface charge, and concentration of QDs and the characterization of QDs conjugates (e.g. QD-protein, QD-DNA, QD-small molecule), are also described. Finally, future perspectives are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.