Abstract
Microwave remote sensing instruments such as synthetic aperture radar (SAR) play an important role in scientific research applications, while they suffer great measurement distortion with the presence of radio frequency interference (RFI). Existing methods either adopt model−based optimization or follow a data−driven black−box learning scheme, and both have specific limitations in terms of efficiency, accuracy, and interpretability. In this paper, we propose a hybrid model−constrained deep learning approach for RFI extraction and mitigation by fusing the classical model-based and advanced data-driven method. Considering the temporal-spatial correlation of target response, as well as the random sparsity property for time−varying interference, a joint low−rank and sparse optimization framework is established. Instead of applying the iterative optimization process with uncertain convergency, the proposed scheme approximates the iterative process with a stacked recurrent neural network. By adopting this hybrid model−constrained deep learning strategy, the original unsupervised decomposition problem is converted to a supervised learning problem. Experimental results show the validity of the proposed method under diverse RFI scenarios, which could avoid the manual tuning of model hyperparameters as well as speed up the efficiency.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.