Abstract
Silica aerogel-encapsulated biocide crystals can potentially enhance the protection efficiency of antifouling coatings, thereby lowering the impact on nontarget aquatic life. In the present study, copper pyrithione (CuPT) crystals are encapsulated by silica aerogel to obtain loadings of 50–80 wt % CuPT. For optimal design of the heterogeneous particles and mapping of the underlying biocide release mechanisms, the aerogel-encapsulated biocide crystals are characterized by scanning (transmission) electron microscopy, energy-dispersive X-ray spectroscopy, thermal gravimetric analysis, mercury intrusion porosity, Brunauer–Emmett–Teller analysis, and light scattering. The microscopic examination demonstrates that the elongated CuPT crystals are encapsulated by a thin highly porous silica layer. When varying the CuPT loading of the aerogels, it is possible to tune the particle size, pore volume, and specific surface area of the aerogels. Furthermore, this study suggests that the hydrophilic aerogel-encapsulated CuPT, when used in antifouling coatings, attracts seawater and contributes to an efficient controlled release of active CuPT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.