Abstract

This study aimed to develop potato starch nanocomposite films containing mesoporous nano-silica (SBA-15, SBA-16 and MCM-41) incorporated with Thyme essential oil (TEO). TEO-SBA-15/potato starch films, TEO-SBA-16/potato starch films and TEO-MCM-41/potato starch films were prepared based on potato starch. The physical and mechanical properties of the nanocomposite films were also investigated. The results showed that the addition of mesoporous nano-silica incorporated with TEO improved the properties of potato starch nanocomposite films. Especially, the addition of TEO-MCM-41 markedly enhanced the tensile strength (4.33 MPa), and reduced the water vapor permeability (1.80 g·m−1·h−1·KPa−1) and moisture absorption (37.67%) of potato starch nanocomposite films. The results of scanning electron microscopy (SEM) analysis showed that TEO-MCM-41 hardly agglomerated in the potato starch nanocomposite films. Additionally, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD) confirmed that strong hydrogen bonds were formed between TEO-MCM-41 and potato starch. The release kinetics of TEO proved that incorporating TEO into the pores of mesoporous nano-silica could delay its release rate, and the Peleg model (t/(Mt − M0) = K1 + K2t) was suitable for describing the release behavior. The findings of this study suggested that TEO-MCM-41/potato starch films had a good application prospect in the field of slow-releasing and antimicrobial packaging materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call