Abstract

The Pattern of development and regulation of the apamin receptor (afterhyperpolarization channel) was studied in cultures of skeletal muscle prepared from 1-2-day-old rat pups. Expression was measured by the specific binding of (125)I-apamin. Apamin binding was virtually undetectable until the time of fusion (3-4 days in culture) of single myoblasts into myotubes. Mature myotubes (5-7 days in vitro) displayed a Bmax of 7.4 fmol/mg protein and a Kd of 376 pmol/L. When studied in mature muscle cells apamin binding was found to increase twofold in response to tetrodotoxin (TTX) and elevated Ko, which resulted in decreased Na(i). In contrast, treatments causing an increase in Na(i), such as monensin and veratridine, caused a decrease in apamin binding. The increase in apamin binding following TTX treatment was due mainly to synthesis of new channels, as the effect was blocked by cycloheximide. Alterations in cytosolic Ca2+ by calcium ionophore or Ca-channel blockers were without effect on apamin-sensitive channel expression. We conclude that afterhyperpolarization channel expression is regulated by the level of intracellular Na+ ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.