Abstract

A major issue in the fabrication of integrated Bragg grating filters in highly confined waveguides is the average effective index fluctuations caused by waveguide dimension variations. Lateral variations are caused by the sidewall roughness created during the etching process while vertical variations are coming from the wafer silicon layer thickness non-uniformity. Grating spectral distortions are known to result solely from the low spatial frequency components of these variations. As a result, in this work, we present an experimental method to quantify such relevant spatial components by stitching a hundred high-resolution scanning electron microscope images. Additionally, we propose two techniques to reduce, in the design, the phase noise impact on integrated Bragg gratings without relying on fabrication process improvements. More specifically, we show that the use of hybrid multimode/singlemode waveguides reduce by more than one order of magnitude the effect of sidewall roughness on integrated Bragg gratings while we show that the fabrication of ultra-compact gratings in spiral waveguides mitigate the impact of the silicon layer thickness variations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.