Abstract

Ti-based amorphous alloys containing no harmful elements are desired. However, many Ti-based amorphous alloys contain toxic elements such as Al, Ni, V and Be. The presence of toxic elements within amorphous alloys is a concern when they are intended for use as a biomaterial. This problem has steered many researchers toward the development of Ti-based amorphous alloys without toxic elements. Our novel amorphous alloys were developed based on this principle. A series of Ti44Zr10Pd10Cu6+xCo23-xTa7 (x = 0, 4, 8) amorphous alloys were developed for biomedical application. A series of protocol tests were performed to check for biocompatibility and potential use of the novel alloys in humans. First, alloy ingots were alloyed by induction melting and then cast into copper molds. The cast rod was then used as the plasma cathode in a filtered cathodic vacuum arc deposition chamber to coat the 25-nm amorphous alloy thin film on the cover glass slides. These coated cover glass slides were then examined for biocompatibility. Cell proliferation and cell differentiation were investigated using Methylthiazol Tetrazolium assay test and by alkaline phosphatase assay on osteoblast like cells (SaOS-2), respectively. Field emission scanning electron microscopy was performed to evaluate the thin film surface characteristics. The thickness of thin film was analyzed using a Stylus profilometer. An adhesion scratch test was administered to evaluate the thin film adhesive strength and indirect hardness comparison. Electron Dispersive X-ray Spectrometry was performed to study the elemental composition. Lastly, a medical grade Ti-6Al-4V alloy was studied in parallel as a control material. Results indicated that all investigated Ti-based amorphous alloys were non-cytotoxic and were comparable to the Ti-6AL-4V. They also demonstrated an ability to support differentiation of osteoblast like cells. The adhesion and the hardness of the thin films on the substrates were superior to that of Ti-6Al-4V. The results suggested that the novel alloys in this study could be potentially utilized in biomedical applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call