Abstract

PLA matrix provides good mechanical, physical and degradability properties, but somehow PLA alone is not good enough to produce a product as PLA has poor toughness resulting a brittle material. Natural fiber such as Durian skin fiber (DSF) can be incorporated into PLA/PP as a biopolymer to achieve the desired properties and better degradation which resulting a good bio-composite. Therefore, the study was carried out to produce bio-composite of DSF filled with PLA/PP and glut palmitate (GP) salt as compatibilizer. The bio-composites was successfully developed using different filler (DSF) loadings (0 php, 15 php, 30 php, 45 php and 60 php) with melt mixing blending. The FTIR analysis showed the new peak existed at 1595 cm-1 revealed a good interaction in the composite system which come from the bending of NH2 vibration from GP. The mechanical properties (tensile properties) and physical properties (water absorption ability and density) of prepared bio-composite were determined. Increasing of DSF filler loading to 60 php DSF in PLA/PP bio-composite with the addition of GP increased in tensile strength (5.06 ± 0.09 MPa) and elongation at break (3.74 ± 0.18%) due to enhanced interfacial bonding and strong adhesion between the polymer matrix and the filler due to the presence of compatibilizer. However, increased filler loading to 60 php DSF, showed a decreasing trend in the tensile modulus which represents high flexibility of the bio-composites. Furthermore, PLA/PP/DSF bio-composites absorption of water increases with the increasing filler loading until it reaches at saturation point. The study concludes that the DSF reinforced PLA/PP with the addition of GP was suitable to be used in the production of bioplastic by many industries which can promote a sustainable environment for society.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.