Abstract

The combined microarc oxidation (MAO) and magnetron sputtering deposition process was used to deposit duplex a-C:H/MAO and Ti-a-C:H/MAO coatings on AM80 magnesium alloy. The microstructure, mechanical properties and tribological behavior of the two duplex coatings were investigated. The experimental results showed that the a-C:H and Ti-a-C:H top films on Si substrates were dense and had a low G peak position and ID/IG ratio, compared with the hydrogen-free amorphous carbon films. Numerous micropores were found on the duplex a-C:H/MAO and Ti-a-C:H/MAO coatings together with low values of hardness (H) and elastic modulus (E), which also showed good binding strength with the Mg alloy substrates. Compared to MAO treated substrate used for the protection of the Mg alloy, the duplex a-C:H/MAO and Ti-a-C:H/MAO coatings still had stable and low value of friction coefficient, even though the surface of the duplex coatings was rough and porous. Furthermore, the mechanism of friction reduction of the two duplex coatings on the Mg alloy substrates was discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.