Abstract

Novel hydrogels were prepared from carboxymethyl cellulose (CMC) sodium salt by crosslinking with polyethylene glycol diglycidyl ether (PEGDE). The detailed structures of the hydrogels were determined via FTIR and solid-state NMR spectroscopic analyses. Increasing the feed ratio of PEGDE to CMC in the reaction mixture led to an increase in the crosslinking degree, which enhanced the physical strength of the hydrogels. The hydrogels exhibited enzyme degradability, and after 3 days of incubation with cellulase, 62–28wt% of the CMC in the hydrogel was degraded under the conditions employed in this study. In addition, the hydrogels exhibited protein adsorption and release abilities, and the amounts of proteins adsorbed on the hydrogels and the release profile of the proteins depended on the protein sizes and crosslinking degree of the hydrogels. These unique properties might enable the use of CMC-based hydrogels as drug delivery system carriers for protein-based drugs if the biological safety of the hydrogel can be verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call