Abstract

In the present study, different series of High Density Polyethylene (HDPE)/carbon nano-composites were prepared using melt blending in a co-rotating intermeshing twin screw extruder. The morphological, thermal, rheological, viscoelastic, mechanical, and fracture toughness properties of the nano-composites were analyzed. The microscopic examination of the cryogenically fractured surface found a good distribution of carbon nano-particles in the HDPE matrix. The melting temperature was not significantly affected by the addition of nano-carbon. Whereas, the crystallization percentage was slightly affected by adding carbon nano-particles into the matrix. The complex viscosity increased as the percentage of carbon increased. The Dynamic Mechanical Analysis (DMA) showed that the storage modulus increased with increasing the carbon nano-particles ratio and with increasing the testing frequency. The tensile test results showed that with increasing the carbon nano-particles contents, the Young’s modulus, yield strength of HDPE nano-composite increased while the strain at fracture decreased. Similarly, the fracture toughness and the strain energy release rate decreased proportional to the carbon content.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call