Abstract

Litopenaeus vannamei is one of the most economically significant aquatic species globally. However, the emergence of acute hepatopancreatic necrosis disease (AHPND) in recent years has resulted in substantial losses within the L. vannamei farming industry. Phage therapy holds promise as an effective strategy for preventing and controlling bacterial infections like AHPND, thereby promoting the healthy and sustainable growth of the shrimp aquaculture sector. In this study, a novel and unique Vibrio parahaemolyticus bacteriophage, named vB_VpaP_SJSY21, was successfully isolated from sewage samples. Using transmission electron microscopy, it was observed that phage SJSY21 has an elongated shell. Notably, phage SJSY21 exhibited high infection efficiency, with an optimal multiplicity of infection (MOI) of only 0.01 and a remarkably short latent period of 10 min, resulting in a lysis quantity of 508. Furthermore, phage SJSY21 demonstrated notable heat resistance and the capacity to withstand high temperatures during preservation, thus holding potential for application in phage therapy. Whole-genome sequencing and analysis confirmed that phage SJSY21 has a genome size of 110,776 bp, classifying it as a new member of the short-tailed bacteriophage family. Additionally, cultivation experiments indicated that phage SJSY21 has the potential to enhance the survival of L. vannamei in culture systems, thereby offering innovative prospects for the application of phage therapy in aquaculture.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call