Abstract

The somatosensory barrel cortex of rodents and its afferent pathway from the facial vibrissae is a very useful model for studying neuronal plasticity. Dendritic spines are the most labile elements of synaptic circuitry and the most likely substrate of experience-dependent alterations in neuronal circuits in cerebral cortex. We characterized morphologically and numerically a specific population of spines, i.e. double synapse spines, which have two different inputs – one excitatory and the other inhibitory, in the B2 barrel of mouse somatosensory cortex. We also described changes in morphology of double synapse spines induced by classical conditioning in which stimulation of vibrissae was paired with a tail shock. The analysis was carried out by means of serial EM micrograph reconstruction. We showed that double spines account for about 10% of all analyzed spines. The morphology of a typical double synapse spine is similar to the morphology of single synapse spine and both consist of two parts – a large head and a narrow, long neck. Excitatory synapses are preferentially located on the head of double synapse spines and inhibitory synapses are usually located on the neck of these spines. The length of the double synapse spine neck decreases and the cross-section area of the spine neck increases significantly as a result of sensory conditioning. The correspondence should be addressed to E. Pyza, Email: pyza@zuk.iz.uj.edu.pl

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.