Abstract
In search of ancient versions of phylogenetically conserved genes/proteins, which are typical for multicellular animals, we have decided to analyse marine sponges (Porifera), the most ancient and most primitive metazoan organisms. We report here the complete nucleotide sequence of Sycon raphanus cDNA coding for a 879 aa long protein, which displays high overall similarity in primary structure and organization of domains with non-receptor tyrosine kinases (TKs) from the Fes/FER family. The encoded protein, which we named Fes/FER_SR, has a highly conserved, 260 aa long tyrosine kinase domain at the C-terminus. Amino-terminal to the catalytic domain is an 85 aa long SH2 domain. The N-terminus is over 500 aa long and displays homology only with N-terminal domains of protein-tyrosine kinases (PTKs) from the Fes/FER family. Mammalian Fes/FER proteins show around 58% overall homology with Fes/FER_SR (identity and similarity) and lower homology was found with Drosophila melanogaster Fps (FER) protein (49%). Homologies in TK, SH2 and N-terminal domains are on average 78%, 65% and 49%, respectively. Fes/FER_SR shows next to best homology with the Abl family of non-receptor PTKs, while Src-related PTKs from the fresh-water sponge Spongilla lacustris are related only distantly to Fes/FER_SR. Phylogenetic analysis shows that the S. raphanus TK is indeed the most ancient known member of the Fes/FER family of non-receptor PTKs. The role of these PTKs in signal transduction in higher animals is still enigmatic; they are present in the nucleus as well as in the cytoplasm and FER is found in all cell types examined. The function of Fes/FER_SR in sponge, the most primitive multicellular animal which lacks specialized organ systems, remains to be elucidated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.