Abstract

ABSTRACT Rb+-doped TiO2 nanoparticles with higher photocatalytic activity were prepared by sol–gel method. The prepared samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), energy dispersive analysis of X-rays (EDAX), and surface area (BET) measurements. The photocatalytic activity for the degradation of rhodamine B (RhB) was evaluated. The effects of calcination temperature, Rb+-doping amount, and the dosage of catalyst in the reaction liquid were investigated. The results showed that Rb+ doping can inhibit phase transformation from anatase to rutile, increase surface area of TiO2 crystals, and reduce crystallite size. TiO2 doped with 1% Rb+ and calcined at 650°C shows much higher photoactivity than the others when the doping level of Rb+ and calcination temperature are 0–5% and 350–850°C, respectively. The kinetics of the degradation of RhB was also analyzed. The kinetics of this reaction fits the pseudo first-order kinetics model well, and the reaction rate constants for pure TiO2 and Rb1-650 are 0.086 min−1 and 0.226 min−1 respectively. Doping with Rb+ improves the photocatalytic activity of TiO2 significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.