Abstract

Twelve recombinant bioluminescent bacteria have been immobilized within the wells of a 96-well plate using two different matrices--agar and sol-gel. All 12 strains were immobilized within individual wells of the plates and the sensitivity of the strains and the stability of the responses were determined for select chemicals. Each strain was exposed to seven well-characterized chemicals over a wide range of concentrations to demonstrate their individual selectivity for specific toxicants. Although the sensitivity of the immobilized cells was generally lower than cultures grown in liquid media, they were comparable. For example, strain DPD1710, which responds to DNA damage was able to detect mitomycin C, a genotoxin, at a minimum concentration of 0.6 ppb. When immobilized, the lower limit of detection was between 1 and 10 ppb. Finally, using compounds that are known to elicit a response from each of the strains, the stability of the bioluminescent responses were measured over an extended period of 4 weeks. Although the activity of several strains decreased over time, the majority of the strains used in both immobilized systems were still responsive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.