Abstract
This paper discusses fabrication aspects of photoresist sacrificial layers for fabricating metal bridges of capacitive radio frequency (RF) microelectromechanical systems (MEMS) switches. First, reflow of the photoresist layer after lithography is investigated for reducing mechanical fracture of the metal layer by smoothing the edges of the sacrificial layer. Second, the dry-etch releasing process of the structures in an O2 plasma has been investigated by identifying suitable etching parameters. The findings in this paper reveal that the mechanical performance of the released bridges strongly depends on the etch parameters. It is shown that especially the etching power affects the mean stress and the stress gradient in the bridge, which results in buckling and deformed bridge shape for an etching power above 500 W, drastically increasing the actuation voltage and reducing the down-state capacitance. Finally, the paper presents a suitable parameter set for the release etching of capacitive MEMS metal bridges.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.