Abstract

The focusing principle and acoustic field characteristics of curved array probe are studied. Delay laws are first computed in the same way as linear array probe, and its effects on the axial acoustic pressure distributions are quantitatively examined. It is shown that the maximum points of axial acoustic pressure occur at positions deviating from the predefined focal depths. To further analyze the focusing principle of curved array probe, simulations of acoustic field are conducted under different settings of focal depth and active aperture size. It reveals that the circular array profile and the inconsistent electronic delay laws make the pulsed ultrasonic waves unable to constructively interfere at target positions. Subsidiary beams arise and further interfere with the axial acoustic pressure distributions of the main beam. To control the transmitted acoustic field, and thus customize the inspection strategy, an optimized delay law calculation scheme is proposed. The good behavior is well validated both by theoretical calculation and experimental examination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call