Abstract

Agrobacterium rhizogenes AT13, a novel bacterial strain that was isolated from contaminated soil, could utilize atrazine as the sole nitrogen, thereby degrading it. Optimization of the degradation reaction using a Box–Behnken design resulted in 99.94% atrazine degradation at pH 8.57, with an inoculum size of 3.10 × 109 CFU/mL and a concentration of 50 mg/L atrazine. Ultra-high performance liquid chromatography-electrospray ionization-high resolution mass spectrometry (UPLC-ESI-HRMS), liquid chromatography tandem mass spectrometry (LC-MS/MS) and high performance liquid chromatography (HPLC) analyses identified and quantified six reported metabolites and a novel metabolite (2-hydroxypropazine) from atrazine degradation by AT13. On the basis of these metabolites, we propose an atrazine degradation pathway that includes dichlorination, hydroxylation, deamination, dealkylation and methylation reactions. The toxicity of the degradation products was evaluated by Toxicity Estimation Software Tool (T.E.S.T). Bioaugmentation of atrazine-polluted soils/water with strain AT13 significantly improved the atrazine removal rate. Thus, AT13 has potential applications in bioremediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call