Abstract

This work describes a systematic experimental study and kinetic modelling of the steady state and the transients associated with the turn-on and turn-off of a NO hollow cathode discharge. The local charge density and mean electron energy have been determined with a double Langmuir probe. Time-resolved Fourier transform infrared spectroscopy and electron bombardment quadrupole mass spectrometry with ionization by electron impact have been used to measure the gas temperature and the concentrations of the stable molecules present in the discharge: the precursor, NO, the major products, N2, O2, and the minor species NO2 and N2O. Emission spectroscopy has been employed to study the time behaviour of the very reactive nitrogen and oxygen atoms. A model based on a reduced set of kinetic equations including electron dissociation, gas-phase reactions, and gas-surface processes gives a global account of the measured data. From the time-resolved results, electron impact dissociation rate constants for some of the involved species under the conditions of the experiment are estimated. This model is compared with that obtained in previous works on N2O plasmas.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.