Abstract

The first failure mode in tensile quasi-static and in tension-tension fatigue (cyclic) loading of composite laminates is intralaminar cracking in layers with off-axis fiber orientation. These tunnel-building cracks are result of combined action of in-plane transverse and shear stresses. We assume that due to non-uniform fiber distribution (clustering) which leads to local stress concentrations, different positions in the layer have different resistance to crack initiation (initiation strength). If so, the weakest position in quasi-static loading is also the weakest in fatigue and some of the distribution parameters for fatigue behavior can be obtained in quasi-static tests, thus significantly reducing the number of required fatigue tests. Methodology is suggested and validated for cases when the cracking is initiation governed-initiated crack almost instantly propagates along fibers. Distribution parameters are identified using data in low crack density region where stress perturbations from cracks do not interact. Monte-Carlo simulations are performed for cracking in layers under quasi-static and cyclic loading using novel approach for computationally efficient stress state calculation between existing cracks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.