Abstract

High-power broadband superluminescent diodes (SLDs) emitting in the 1.2-1.3- <i xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">mu</i> m region are demonstrated using InAs-GaAs quantum dots (QDs). The highest output powers of ~30-50 mW are achieved using 18 QD layers with p-doped GaAs spacers. At these high powers the device operates in a regime of broad bandwidth (~100 nm) with a spectral dip of ~5 dB between two separate peaks originated by the QD ground and excited states. Spectral calculations performed with a traveling-wave rate equation model show excellent agreement with the experimental data and provide design rules for optimizing the output spectrum. SLD characteristics are presented for two different device structures consisting of tilted and bent waveguides. The latter allows the achievement of higher output powers at lower currents. The coherence properties and the temperature characteristics are also discussed in detail.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call