Abstract

Two molecular variants of gonadotropin-releasing hormone (GnRH) have been previously characterized in the brain of amphibians, i.e., mammalian GnRH (mGnRH) and chicken GnRH-II (cGnRH-II). The aim of the present study was to identify the molecular forms of gonadotropin-releasing hormone and to localize gonadotropin-releasing hormone-containing elements in the spinal cord of the frog Rana ridibunda using highly specific antisera against mGnRH and cGnRH-II. High-performance liquid chromatography (HPLC) analysis combined with radioimmunoassay (RIA) detection revealed that frog spinal cord extracts contained both mGnRH and cGnRH-II. Immunohistochemical labeling revealed that the frog spinal cord was devoid of GnRH-containing cell bodies. In contrast, numerous GnRH-immunoreactive fibers were observed throughout the entire length of the cord. mGnRH immunoreactivity was only detected in the rostral region of the cord and consisted of varicose processes located in the vicinity of the central canal. cGnRH-II-positive fibers were found throughout the spinal cord, the density of immunoreactive processes decreasing gradually toward the caudal region. Two main cGnRH-II-positive fiber tracts with a rostrocaudal orientation were observed: a relatively dense fiber bundle surrounding the central canal, and a more diffuse plexus in the white matter. In addition, short, varicose cGnRH-II-positive processes with a radial orientation were present throughout the gray matter. These fibers were particularly abundant ventromedially and formed a diffuse network that ramified laterally to end in the vicinity of motoneurons. Taken together, these data indicate that the frog spinal cord, like the frog brain, contains two forms of GnRH. The presence of numerous cGnRH-II-immunoreactive fibers in the ventral horn suggests that cGnRH-II may influence the activity of a subpopulation of motoneurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.