Abstract

A micro-reflectance imaging system based on hyperspectral line-scanning microscope is developed for surface characterization and thickness mapping of two-dimensional MoS2. The hyperspectral datacube of region of interest (120 × 200 μm2) is obtained with microscale spatial resolution. Single-band quantitative analysis shows distributions of different thicknesses with wavelength variations. The excitonic peak with position around 655 nm is measured by differential reflectance analysis. Peak position mapping is employed for imaging MoS2 flakes with specific thickness and reconstructed images perform the same region of interest with high accuracy. The developed micro-reflectance imaging system has applications in laboratory analyses and industrial monitoring of 2D materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.