Abstract

The physical characteristics of surface roughness observed on first-stage high-pressure turbine vanes that had been in service for a long period were investigated in this study. Profilometry measurements were utilized to provide details of the surface roughness formed by deposits of foreign materials on different parts of the turbine vane. Typical measures of surface roughness such as centerline average roughness values were shown to be inadequate for characterizing roughness effects. Using a roughness shape parameter originally derived from regular roughness arrays, the turbine airfoil roughness was characterized in terms of equivalent sand-grain roughness in order to develop an appropriate simulation of the surface for laboratory experiments. Two rough surface test plates were designed and fabricated. These test plates were evaluated experimentally to quantify the heat transfer rate for flow conditions similar to that which occurs on the turbine airfoil. Although the roughness levels on the two test plates were different by a factor of two, both surfaces caused similar 50 percent increases in heat transfer rates relative to a smooth surface. The effects of high free-stream turbulence, with turbulence levels from 10 to 17 percent, were also investigated. Combined free-stream turbulence and surface roughness effects were found to be additive, resulting in as much as a 100 percent increase in heat transfer rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.