Abstract

Heavy goods vehicles (HGVs), which usually travel on rough and dirt roads, have great potential for harvesting the dissipated energy during the damping routines. Thus, this study explores the benefits of energy-harvesting shock absorbers when integrated into HGVs due to their vibration's densities. The double-side arm-toothed indirect-drive rotary electromagnetic energy-harvester is consequently proposed. The contribution lies in that, (a) it could be the first time applying a double-side arm-toothed indirect-drive rotary electromagnetic energy-harvesting shock absorber in an articulated truck semi-trailer model; (b) complete characterization of the arm-toothed indirect-drive regenerative damper via parametrical conflict and sensitivity analyses; (c) quantitative assessment of the total harvestable power and voltage of the proposed 12 double-sided arm-toothed regenerative truck shock absorbers; and (d) Taguchi method simulation to perform a sensitivity ranking analysis of the truck influential parameters considering the harvested power, the truck ride quality and road holding criteria. The results indicate that the truck harvested an average power of 0.33, 1.33, 5.24, 21.3 W under road Classes of B, C, D, and E at 120 km/h. Regardless of the frequency range, the truck suspension can still maintain a comfortable driver ride index while simultaneously harvest power via the 12 integrated double-sided arm-toothed regenerative dampers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.