Abstract
Considering that adrenal glands possess a variety of purinoceptors associated with various cell types and that some of these cells (chromaffin cells) secrete large amounts of adenine nucleotides, it was of interest to localize nucleoside triphosphate diphosphohydrolase (NTPDase) in these glands and to define the biochemical characteristics of this ectonucleotidase. Immunolocalization produced a moderate reaction in capsula and medulla, with no signal in zona glomerulosa and zona reticularis. In contrast, a very strong reaction was found in zona fasciculata. Biochemical analysis of particulate fractions isolated from whole glands revealed high levels of ATPase and ADPase activities. This appeared to be attributable to the NTPDase since the level of ADPase was as high as ATPase. Both ATPase and ADPase activities were similarly inhibited by sodium azide. Additionally electrophoretograms with these two substrates showed comparable patterns. Western blots with ‘Ringo’, an antibody that recognizes the different isoforms of mammalian NTPDases, showed the presence of isoforms of NTPDases at 54 and 78 kDa, respectively. Interestingly, the 54 kDa isoform remains in the supernatant of a chromaffin granule lysate after ultracentrifugation. Up until now little interest has been given to the relationship between adrenal medulla and cortex. Presence of purinoceptors and ectonucleotidases in both these regions together with the effects of ATP in vivo and in vitro in different species indicate that purines play a significant role in adrenal glands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.