Abstract

Vibrio parahaemolyticus, an important zoonotic pathogen, can cause severe diseases and even death in aquatic animals and humans. As the widespread use of antibiotics gradually diminishes their effectiveness, phages, which can selectively lyse bacteria, are garnering increased attention as a valuable alternative antibacterial strategy. This study characterized PG288, a lytic phage utilizing V. parahaemolyticus strain G855 as its host. Morphologically, the phage features a polyhedral head and a long, non-retractable tail. Bactericidal assays revealed that phage PG288 exhibited a strong lytic ability against V. parahaemolyticus strain G855 and demonstrated a broad host range, as evidenced by the ability to infect several distinct Vibrio species. The one-step growth curve indicated a latent period of approximately 50 min for phage PG288, with a burst size of roughly 92 PFU per cell. Additionally, phage PG288 exhibited remarkable stability within a temperature range of 20–50°C and a pH range of 4–10. Genomic analysis unveiled 105 ORFs within phage PG288, notably devoid of genes associated with antibiotic resistance, virulence, and lysogenic activity. Phylogenetic analysis conclusively identified it as a new member of the genus Mardecavirus within the class Caudoviricetes. In summary, this study contributes valuable insights to the phage database, presenting phage PG288 as a promising candidate for phage therapies against Vibrio infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call