Abstract

Objectives: To characterize morphological, physicochemical and genomic features of a novel virulent coliphage which was isolated from an engineered Escherichia coli culture and termed engineered E. coli phage (EEP). Methods and Results: Electron microscopy revealed that EEP has an icosahedral head (62 nm in diameter) and a long, flexible tail (138 nm in length). EEP was able to infect all 10 engineered E. coli strains kept in our laboratory, showing a strong ability to lyse engineered E. coli. Sequencing of the EEP genome revealed a double-stranded DNA (39.8 kb) with 54.72% GC content. Fifty-two open reading frames were predicted to be coding sequences, 18 of which were functionally defined and organized in a modular format, which includes modules for DNA replication, DNA packaging, structural proteins and host cell lysis. This phage could not be inactivated at 90° for 45 min and was resistant to ethanol and alkali treatment. EEP is assigned to the Siphoviridae family based on its morphological, genomic and physicochemical properties. Conclusions: A novel coliphage was isolated from engineered E. coli strains, and its morphological, genomic and physicochemical properties were characterized, which will improve our knowledge of bacteriophage diversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.