Abstract

A strain of Ochrobactrum sp. DDT-2 that was capable of degrading DDT as the sole carbon and energy source was isolated and sequenced, and its biodegradation characteristics and metabolism mechanism were examined. The genome sequence of the isolate DDT-2 was composed of 4,630,303bp with a GC content of 55.99% and 4454 coding genes. The degradation rate of DDT by the isolate DDT-2 increased with the increasing substrate concentration (0.1–10mg/l) and temperature (20–40°C). The degradation half-life of DDT in the presence of the isolate DDT-2 at pH7.0 was obviously shorter than those at pH5.0 and 9.0. Potential DDT degradation genes were found in the isolate DDT-2 genome by a BLASTx search against a DDT degradation genes (DDGs) database. A common biodegradation pathway of DDT was proposed based on the combined analysis of genome annotation and mass spectrometry. DDT was initially dechlorinated to form DDD and DDE. Then, it was transformed into DDMU and DDA via dechlorination and carboxylation, and it may ultimately be mineralized to carbon dioxide. The results suggested that the isolate DDT-2 could be useful for the bioremediation of DDT and its metabolite residues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.