Abstract
The increasing population infected by carbapenem-resistant Klebsiella pneumoniae necessitates the development of alternative therapies. In this study, we isolated, characterized, and sequenced a bacteriophage, P509, which was able to specifically infect and lyse carbapenem-resistant K. pneumoniae of K locus type KL64. A one-step growth curve experiment showed that the latent time period of phage P509 was 5 min, and the burst size was about 85 phage particles/cell. Stability tests confirmed that P509 was stable over a wide range of temperatures (4 to 50°C) and pH (3 to 11) conditions. Phage P509 was identified as a linear double-stranded DNA phage with a genome of 40,954 bp with 53.2% G+C content, encoding 50 predicted proteins. Genomic and morphological analysis suggested that P509 belonged to the genusPrzondovirus, family Autographiviridae, order Caudovirales. Further analysis showed that no virulence-related genes or lysogen-formation gene clusters were detected in the genome, suggesting that P509 is a lytic phage, making it potentially suitable for clinical applications. In vitro, the number of viable cells in three phage-treated groups (MOI = 0.1, 0.01, 0.001) decreased by 3.75 log10 CFU/ml, 3.32 log10 CFU/ml and 3.21 log10 CFU/ml, respectively, after 80 min of incubation, in comparison to that in the untreated group. Based on these characteristics, phage P509 may be a promising candidate for future phage therapy applications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.