Abstract

In this work we investigate an iron oxide thin film grown with atomic layer deposition for a gas sensor application. The objective is to characterize the structural, chemical, and electrical properties of the film, and to demonstrate its gas-sensitivity. The obtained scanning electron microscopy and atomic force microscopy results indicate that the film has a granular structure and that it has grown mainly on the glass substrate leaving the platinum electrodes uncovered. X-ray diffraction results show that iron oxide is in the α–Fe 2O 3 (hematite) phase. X-ray photoelectron spectra recorded at elevated temperature imply that the surface iron is mainly in the Fe 3+ state and that oxygen has two chemical states: one corresponding to the lattice oxygen and the other to adsorbed oxygen species. Electric conductivity has an activation energy of 0.3–0.5 eV and almost Ohmic current–voltage dependency. When exposed to O 2 and CO, a typical n-type response is observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.