Abstract

Carotenoids are the pigment substances of yellow-fleshed kiwifruit, and among them β-cryptoxanthin has only been detected in the brighter yellow-fleshed variety ‘Jinshi 1’. β-Carotene hydroxylase (BCH) catalyzes the formation of β-cryptoxanthin and zeaxanthin, but its molecular characteristics and functions have not been fully explained. Here we isolated two β-carotene hydroxylase genes, AcBCH1 and AcBCH2 from kiwifruit (Actinidia chinensis), and their relative expression levels exhibited a close correlation with the content of β-cryptoxanthin. AcBCH1 catalyzed the formation of β-cryptoxanthin when transformed into β-carotene-accumulating yeast cells. Moreover, silenced expression of AcBCH1 in kiwifruit caused decreases in the contents of zeaxanthin, lutein, and β-cryptoxanthin, and an increase in β-carotene content. The content of β-carotene decreased significantly after the AcBCH1/2 genes were overexpressed in tomato. The content of zeaxanthin increased and β-carotene decreased in transgenic kiwifruit seedlings. The results will enrich our knowledge of the molecular mechanisms of carotenoid biosynthesis in kiwifruit.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.