Abstract
The plasmid pAnox1, isolated from Anoxybacillus gonensis 05S15, was sequenced and characterized as a circular, double-stranded DNA molecule of 1592 base pairs with a GC content of 40.01 %. Despite its cryptic nature and small genome, bioinformatic analyses identified conserved motifs associated with replication-related proteins, though BLAST searches revealed no significant homology with other plasmids. The plasmid genome contains five putative Open Reading Frames (ORFs), four palindromic sequences, and two direct repeats on both strands, suggesting regulatory roles. Electron microscopy and Southern hybridization studies confirmed that pAnox1 follows a Rolling Circle (RC) replication mode. The study further demonstrated that the plasmid encodes three distinct transcripts: ORF-1 and ORF-3 are oriented in the same direction, while ORF-5 is on the opposite strand. RACE and LACE analyses revealed transcript lengths of 903 bp for ORF1, 499 bp for ORF3, and 211 bp for ORF5. Quantitative real-time PCR estimated the relative copy number of pAnox1 at 127 ± 2 copies per chromosomal equivalent. This novel RC-type plasmid in the Anoxybacillus genome holds promise as a cloning and expression vector for biotechnological applications and in vivo protein engineering.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.