Abstract

Pathogen-induced host immune responses reduce the efficacy of pathogens used to control pests. However, compared to the well-deciphered immunity system of Drosophila melanogaster, the immunity system of agricultural pests is largely unconfirmed through functional analysis. Beginning to unveil mechanisms of transcription regulation of immune genes in the Asian corn borer, Ostrinia furnacalis, we cloned the complementary DNA (cDNA) of a transcription factor Relish by rapid amplification of cDNA ends. The 3164 bp cDNA, designated Of-Relish, encodes a 956-residue protein. Bioinformatic analysis showed that Of-Relish had a Rel homology domain, a predicted cleavage site between Q409 and L410 , six ankyrin repeats, and a death domain. The response of Of-Relish expression to the Gram-negative bacteria Pseudomonas aeruginosa was sooner and stronger than to the Gram-positive Micrococcus luteus. The antimicrobial peptide genes Attacin and Gloverin had similar expression patterns in response to the infections. Knockdown of Of-Relish led to a decrease in Attacin and Gloverin messenger RNA levels, suggesting that Attacin and Gloverin were regulated by Of-Relish. Together, the results suggested that Of-Relish is a key component of the IMD pathway in O. furnacalis, involved in defense against P. aeruginosa through activation of Attacin and Gloverin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call