Abstract

The simultaneous observation and analysis of atmospheric particles on a regional scale is an important approach to developing control strategies for air pollution. To study the spatial distribution characteristics of particulate matter and water-soluble inorganic ions in the Ili Valley Urban agglomeration, PM2.5 and PM10 samples were synchronously collected from July 19 to July 29, 2021 in Yining City and the surrounding three counties, and then nine types of water-soluble inorganic ions (WSIIs) were analyzed. The spatial distribution characteristics, existence form of WSIIs, and influencing factors were discussed in depth. The results showed that the average ρ(PM2.5) and ρ(PM10) in the Ili River Valley urban agglomeration in summer were 23 μg·m-3 and 59 μg·m-3, respectively. The emission of local industrial and mobile sources in Yining City was higher than that of the surrounding three counties, resulting in the highest ρ(PM2.5) in the region (25 μg·m-3). Due to the influence of dust sources and topography, the ρ(PM10) in Yining county was the highest in the region (63 μg·m-3). Huocheng county is located upwind of the region, and these favorable diffusion conditions resulted in the lowest ρ(PM2.5) and ρ(PM10) (20 μg·m-3 and 49 μg·m-3, respectively). The concentrations of WSIIs in PM2.5 and PM10 ranged from 28.2%-29.9% and 16.0%-20.2%, respectively. The four main ions (SO42-, NO3-, NH4+, and Ca2+) accounted for approximately 90% of WSIIs mass concentrations. The concentration order of the four main ions in PM2.5 was SO42->Ca2+>NH4+>NO3- and SO42->Ca2+>NO3->NH4+ in PM10. The results of correlation analysis showed that the similar SO42- concentrations in the four cities were mainly caused by regional transport. Ca2+ was the highest-concentration ion in PM10 of Yining City and Qapqal Xibe Autonomous county, and the proportion of Ca2+ was significantly higher than that in most cities in China, which reflected that the cities in the core area of the Ili Valley were greatly affected by the dust sources. The ratios of n(NO3-)/n(SO42-) in PM2.5 and PM10 were 0.78 and 0.76, respectively, indicating that the influence of stationary sources was greater than that of mobile sources. The ratio of n(NO3-)/n(SO42-) in Yining City>Huocheng county>Yining county>Qapqal Xibe Autonomous county, which was consistent with the motor vehicle populations of the four cities, reflecting that Yining City was affected by motor vehicle sources more than the surrounding three counties. The secondary components mainly existed in the form of (NH4)2SO4, NH4HSO4, and NH4NO3. There was excess ammonia after the reaction between NH4+ and SO42- in each city. NH4NO3 mainly existed in Yining City, which was mainly related to high NO2 in Yining City. The NOR of the four cities were 0.03-0.10 and 0.03-0.16 in PM2.5 and PM10, respectively, and the secondary transformation of NO3- was weak due to the influence of high temperatures in summer. The SOR were 0.21-0.41 and 0.23-0.44, respectively. The SOR of Qapqal Xibe Autonomous county was the highest due to the relatively high humidity, whereas the SOR of Huocheng county was higher than that of the three sites in Yining City due to the influence of regional transportation. The formation mechanisms showed that SO42- in Qapqal Xibe Autonomous county and Yining City were mainly produced by the heterogeneous reaction, and in Yining county it was mainly formed via the homogeneous reaction. However, the formation mechanism in Huocheng county was complex and was affected by both homogeneous and heterogeneous reactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call