Abstract

Cold stress detrimentally influences fruit development, leading to a substantial yield reduction in many fruit-bearing vegetables. Cucumber, a vegetable of subtropical origin, is especially sensitive to cold. Cold-inducible parthenocarpy (CIP) promises fruit yield under cold conditions. Previously, we identified a CIP line EC5 in cucumber, which showed strong parthenocarpy and sustained fruit growth under cold conditions (16°C day/10°C night). However, the candidate gene and genetic mechanism underlying CIP in cucumber remain unknown. In this study, both BSA-seq and conventional QTL mapping strategies were employed on F2 populations to delve into the genetic control of CIP. A single QTL, CIP5.1, was consistently mapped across two winter seasons in 2021 and 2022. Fine mapping delimited the CIP locus into a 38.3 kb region on chromosome 5, harboring 8 candidate genes. Among these candidates, CsAGL11 (CsaV3_5G040370) was identified, exhibiting multiple deletions/insertions in the promoter and 5′UTR region. The CsAGL11 gene encodes a MADS-box transcription factor protein, which is homologous to the genes previously recognized as negative regulators in ovule and fruit development of Arabidopsis and tomato. Correspondingly, cold treatment resulted in decreased expression of CsAGL11 during the early developmental stage of the fruit in EC5. A promoter activity assay confirmed promoter polymorphisms leading to weak transcriptional activation of CsAGL11 under cold conditions. This study deepens our understanding of the genetic characteristics of CIP and elucidates the potential role of the CsAGL11 gene in developing cucumber cultivars with enhanced fruiting under cold conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.