Abstract

One of the main applications of ceria (CeO2) is its use in glass polishing. About 16,000 tonnes of rare earth oxides, which is about 10% of total rare earth production, are used for polishing applications. The waste generated in glass polishing contains rare earths, along with other impurities. In this study, two different glass polishing waste samples were characterized and two different processes were proposed for the complete recovery of rare earths from polishing waste, i.e., an acid-based process and an alkali-based process. The polishing waste samples were characterized with inductively coupled plasma optical emission spectrometry (ICP-OES), X-ray fluorescence spectroscopy (XRF), X-ray diffraction (XRD), scanning electron microscopy (SEM), thermo-gravimetric analysis (TGA) and particle size analysis. Chemical analysis showed that sample A (CeO2-rich waste from plate glass polishing) contained a high amount of impurities compared to sample B (CeO2-rich waste from mirror polishing). XRD analysis showed that sample B contained CeO2, LaO0.65F1.7 and LaPO4 compounds, whereas sample A contained CaCO3 in addition to rare earth compounds. SEM-EDX analysis showed the presence of alumino-silicates in sample A. Leaching experiments were carried out at 75 °C at different acid concentrations for the recovery of rare earths from polishing waste samples. The leaching results showed that it is difficult to dissolve rare earths completely in acid solutions due to the presence of fluorides and phosphates. Hence, undissolved rare earths in the leach residue were further recovered by an alkali treatment with NaOH. In another approach, polishing waste samples were directly treated with NaOH at 500 °C. After alkali treatment followed by water leaching, rare earths can be completely dissolved during acid leaching. Rare earths from polishing waste can be recovered completely by both the acid-based process and the alkali-based process.

Highlights

  • Cerium is the most abundant rare earth element (REE) [1]

  • After alkali treatment followed by water leaching, rare earths can be completely dissolved during acid leaching

  • Direct acid leaching of the samples with HCl at 75 ◦ C for 4 h with a L/S ratio of 10 dissolved only a maximum of 80% of the REEs

Read more

Summary

Introduction

Cerium is the most abundant rare earth element (REE) [1]. The total estimated global reserves of cerium minerals are about 30 million tonnes [2]. The current production of ceria (CeO2 ) is about. 54,400 tonnes, which is about 32% of rare earth oxide (REO) production [3]. Cerium is mainly used in catalysts, glass additives, polishing, ceramics, phosphors and LEDs, etc. The consumption of ceria in glass polishing is about 16,000 tonnes, which is about 10% of total RE oxide production [4].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call