Abstract
Ferrier reactions follow a mechanistic pathway whereby Lewis acid activation of a cyclic enol ether facilitates departure of an allylic leaving group to form a glycosyl Ferrier cation. Attack on the Ferrier cation provides a new acetal linkage concurrent with the transposition of the alkene moiety. The idiosyncratic outcomes of Ferrier reactions of seven-membered ring carbohydrate-based oxepines prompted an investigation of its corresponding septanosyl Ferrier cation. Experiments that characterized the ion, including gas-phase cryogenic IR spectroscopy matched with density functional theory-calculated spectra of candidate cation structures, as well as product analysis from solution-phase Ferrier reactions, are reported here. Results from both approaches revealed an inclination of the seven-membered ring cation to contract to five-membered ring structures. Gas-phase IR spectra matched best to calculated spectra of structures in which five-membered dioxolenium formation opened the oxepine ring. In the solution phase, an attack on the ion by water led to an acyclic enal that cyclized to a C-methylene-aldehydo arabinofuranoside species. Attack by allyl trimethylsilane, on the other hand, was diastereoselective and yielded a C-allyl septanoside.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: The Journal of organic chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.