Abstract
In order to evaluate the feasibility of newly developed gallium nitride (GaN) devices in a cryogenically cooled converter, this article characterizes a 650-V enhancement-mode GaN high-electron mobility transistor (GaN HEMT) at cryogenic temperatures. The characterization includes both static and dynamic behaviors. The results show that this GaN HEMT is an excellent device candidate to be applied in cryogenic-cooled applications. For example, transconductance at cryogenic temperature (93 K) is 2.5 times higher than one at room temperature (298 K), and accordingly, peak di/dt during turn-on transients at cryogenic temperature is around 2 times of that at room temperature. Moreover, the ON-resistance of the channel at the cryogenic temperature is only one-fifth of that at room temperature. The corresponding explanations of performance trends at cryogenic temperatures are also given from the view of semiconductor physics. In addition, several device failures were observed during the dynamic characterization of GaN HEMTs at cryogenic temperatures. The ultrafast switching speed-induced high di/dt and dv/dt at cryogenic temperatures amplify the negative effects of parasitics inside the switching loop. Based on failure waveforms, two failure modes were classified, and detailed failure mechanisms caused by ultrafast switching speed are given in this article.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Journal of Emerging and Selected Topics in Power Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.