Abstract

Interferon lambda (IFN-λ) is an important type III interferon triggered mainly by viral infection. IFN-λ binds to their heterodimeric receptors and signals through JAK-STAT pathways similar to type I IFN. In this study, we deduced the buffalo IFN-λ sequences through the polymerase chain reaction, and then studied IFN-λ’s expression patterns in different tissues, and post induction with poly I:C and live MRSA using RT-qPCR. The full-length sequences of buffalo IFN-λ3, IFN-λ receptors, and a transcript variant of IFN-λ4 were determined. IFN-λ1 is identified as a pseudogene. Virus response elements and a recombination hotspot factor was observed in the regulatory region of IFN-λ. The IFN-λ3 expressed highest in lungs and monocytes but IFN-λ4 did not. The expression of Interferon Lambda Receptor 1 was tissue specific, while Interleukin 10 Receptor subunit beta was ubiquitous. Following poly I:C induction, IFN-λ3 expression was primarily observed in epithelial cells as opposed to fibroblasts, displaying cell type-dependent expression. The cytosolic RNA sensors were expressed highest in endometrial epithelial cells, whereas the endosomal receptor was higher in fibroblasts. 2’,5’-oligoadenylate synthetase expressed higher in fibroblasts, myxoma resistance protein 1 and IFN-stimulated gene 56 in epithelial cells, displaying cell-specific antiviral response of the interferon stimulated genes (ISGs). The endometrial epithelial cells expressed IFN-λ3 after live S. aureus infection indicating its importance in bacterial infection. The induction of IFN-λ3 was S. aureus isolate specific at the same multiplicity of infection (MOI). This study elucidates the IFN-λ sequences, diverse expression patterns revealing tissue specificity, and specificity in response to poly I:C and bacterial stimuli, emphasising its crucial role in innate immune response modulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.