Abstract

In this study, the Fox gene family of Ruditapes philippinarum was identified by bioinformatics analysis and genome data. The results showed that a total of 21 Fox genes were identified in R. philippinarum, which were divided into 16 subfamilies, including two members of Foxa subfamily (Foxa1, Foxa2), three members of Foxl subfamily (Foxl1b, Foxl1a, FOXL2), three members of Foxn subfamily (FOXN3, FOX4A, Foxn4b) and one member of other families. The chromosome distribution, domains, conserved motifs, introns, exons and protein tertiary structures of these 21 Fox genes were predicted. By analyzing the RNA-seq data of R. philippinarum, it was found that the Fox gene family was differentially expressed in different tissues, different developmental stages and under heat and cold stress. Most of Fox genes were highly expressed in four tissues: labial palp, gonad, gill and foot. Most of the Fox genes were highly expressed in blastula stage. Most of the Fox genes were highly expressed in high temperature group of two populations, and Foxo, FOXG1 were highly expressed in low temperature group. In addition, qPCR showed that the expression levels of Foxo and Foxj1b genes increased significantly under acute cold stress. Therefore, we speculate that Fox genes may play important roles in embryo development and the temperature stress of R. philippinarum, and this study provides a basis for further exploring the molecular mechanism of low temperature tolerance mediated by Fox.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.